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Abstract. A comprehensive model study of Bose-Einstein correlation radii in heavy ion collisions is pre-
sented. The starting point is a longitudinally and transversally expanding fireball, represented at freeze-out
by an azimuthally symmetric emission function. The freeze-out temperature is allowed to feature trans-
verse and temporal gradients. Their effects on the correlation radii are studied. In particular, we evaluate
numerically their dependence on the transverse mass of the particle pairs and check a recent suggestion,
based on analytical approximations, that for certain reasonable source parameters all three correlation
radii satisfy simultaneously a 1/

√
M⊥ scaling.

1 Introduction

Recently, two-particle intensity interferometry, exploiting
the effects of Bose-Einstein (BE) symmetrization on the
two-particle momentum spectra, has been developed into
a powerful tool for measuring not only the space-time di-
mensions of the particle emitting object, but also its dy-
namical state at particle freeze-out. Modern Bose-Einstein
interferometry thus goes far beyond the original work by
Hanbury Brown and Twiss, who introduced and success-
fully demonstrated photon intensity interferometry for
static sources in astrophysics [1], and the pioneering pa-
per by Goldhaber, Goldhaber, Lee, and Pais [2] who first
exploited similar ideas in particle physics. Good reviews
of the basic theoretical and experimental techniques can
be found in [3–7] while the more recent theoretical devel-
opments are summarized in a series of lectures published
in [8].

Collective dynamics of the source leads to a character-
istic dependence of the two-particle correlation function
on the total momentum of the particle pair. The width
of the correlator as a function of the relative momentum
of the two particles measures the size of the “regions of
homogeneity” [9] inside the source across which the mo-
mentum distribution changes sufficiently little to guaran-
tee measurable rates for pairs with similar momenta of the
two particles. For rapidly expanding sources widely sepa-
rated points do not emit particles of similar momenta; the
homogeneity regions seen by BE correlation function thus
form only a fraction of the whole source. Moreover, the
momentum of a particle defines the homogeneity region
from which it is coming; we will call the homogeneity re-
gion which contributes to the emission of particles with a
given momentum the “effective source” for such particles.

The size parameters of the “effective source” (which
are measured by the correlator and which we will thus call

“correlation radii” or simply “HBT radii”) are related to
the magnitude of the velocity gradients in the source, mul-
tiplied with a thermal smearing factor

√
T/M⊥ originat-

ing from the local momentum distribution [10–12]. They
are thus affected by both the expansion velocity profile of
the source and by variations of the width (“temperature”)
of the local momentum distributions across the source
[11,13–16]. Another physical mechanism which can, even
in the absence of flow and temperature gradients, lead
to dramatic differences between the “effective source” of
particles with a fixed momentum K and the momentum-
integrated distribution of source points in space-time is
strong reabsorption or rescattering of the particles in the
interior of the source; this leads to a surface-dominated
distribution of last interaction points with a strong pref-
erence for outward-directed momenta. Such “opaque sour-
ces” and their effects on the correlation radii have recently
been discussed in [17,18] on a semianalytic level using sim-
ple models. Our investigations on this subject will be pub-
lished in the next paper [19].

While the basic relations between such source features
as mentioned above and the properties of the measurable
two-particle correlation functions appear to be qualita-
tively understood, this is not sufficient for a quantitative
interpretation of two-particle correlation data and a com-
plete reconstruction of the source from the measurements.
Quantitative numerical investigations, including compre-
hensive parameter studies, so far exist mostly for transpar-
ent expanding sources with constant freeze-out tempera-
ture [12,20–22], while for sources with temperature gradi-
ents some numerical checks of the approximate analytical
approximations developed in [13–15] have been performed
in [23,24]. In [23] the validity range of the analytical for-
mulae given in [14] was determined. A comparison with
experimental data from 200 A GeV/c S+Pb collisions [25]
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in [24] revealed, however, that the required source param-
eters lie outside this range of validity. A quantitative com-
parison with data thus requires numerical studies.

In this paper we present a numerical parameter study
of the influence of flow and temperature gradients on the
correlation radii. One goal of this investigation is to set-
tle a question which was left open in [23,24]: based on
a series of approximations, the authors of [14] had found
a common 1/

√
M⊥ scaling law for all three HBT radii

Rs, Ro, Rl in a Cartesian parametrisation of the correla-
tor. This was desirable in view of the S+Pb data of [25]
where agreement with such a common scaling law was re-
ported (although supported only by three data points in
each Cartesian direction). The data of [26–31] from S+S,
S+Ag, S+Au, and Pb+Pb collisions, on the other hand,
all show a much stronger M⊥-dependence of the longitu-
dinal HBT radii compared to the transverse ones. This
is in qualitative agreement with the theoretical studies
in [12,20,21] which, for sources with constant temperature
and boost-invariant longitudinal, but weaker transverse
expansion, show a weaker M⊥-dependence for Rs than
for Rl. In [12,21] it was argued that, if one fits the M⊥-
dependence of the HBT radii with a negative power law,
Ri(M⊥) ∼ M−αi

⊥ [27,28,31], the power αi itself should
be proportional to the rate of expansion in direction i;
this feature cannot be obtained within the simple sad-
dle point approximation used in [10,11,13,14,16,32]. We
show here that, within the phenomenologically allowed pa-
rameter range, this remains true even in the presence of
temperature gradients.

In contrast to the work of [23,24] we also compute
the HBT radii in the Yano-Koonin-Podgoretskĭı (YKP)
parametrisation of the correlation function [33,34,32]
which have a more straightforward and simpler interpreta-
tion in space-time [32,21] than the HBT parameters from
the Cartesian (Pratt-Bertsch-Chapman) parametrisation
[10,11]. As far as we know, the effects of temperature gra-
dients on the YKP parameters have not been studied be-
fore.

We want to stress that resonance decays are not ad-
dressed in this paper. It is known that they can strongly
affect the correlation function [35–40] in which case a
Gaussian parametrisation as employed here becomes ques-
tionable [40–42]. Thus, while our calculations refer both
to pion and kaon correlations, only the kaon results and
those for high-K⊥ pions (where resonance decays can be
neglected) can be directly related to data. For low-K⊥
pion pairs our results show the features of the contribu-
tion from directly emitted pions to the correlator.

2 Formalism

For chaotic sources the two-particle correlation function is
in very good approximation given by the formula [43–45]

C(q, K) ' 1 +

∣∣∫ d4x S(x, K) eiq.x
∣∣2∣∣∫ d4x S(x, K)

∣∣2 . (1)

Here S(x, K) is the emission function (single-particle Wig-
ner phase-space density) of the source [43–45], and K =
1
2 (p1 + p2) (with p1,2 on-shell) is the average pair momen-
tum while q = p1 − p2 denotes the momentum difference
between the two particles.

One usually parameterizes the correlation function by
a Gaussian in q [20,21]. Since q satisfies the on-shell con-
straint q ·K = 0, only three of its four components are in-
dependent. This leaves room for various (mathematically
equivalent) Gaussian parametrisations, using different sets
of independent q-components. Here we will consider only
azimuthally symmetric sources and evaluate the parame-
ters (HBT radii) of the Cartesian and of the Yano-Koonin-
Podgoretskĭı (YKP) parametrisations, in the commonly
used coordinate system where the z axis defines the beam
direction and K lies in the x − z plane. The x axis is cus-
tomarily labeled as o (for outward), y as s (for sideward),
and z as l (for longitudinal).

The Cartesian parametrisation of the correlator em-
ploys the three spatial components of q in the form [10,
11]

C(q,K) = 1 + exp
[

− R2
s(K)q2

s − R2
o(K)q2

o

− R2
l (K)q2

l − 2R2
ol(K)qoql

]
. (2)

The four K-dependent parameters (HBT radii) are then
given by linear combinations of the space-time variances
of the effective source of particles with momentum1 K [10,
11,46]:

R2
s(K) = 〈ỹ2〉 , (3)

R2
o(K) = 〈(x̃ − β⊥t̃)2〉 , (4)

R2
l (K) = 〈(z̃ − βl t̃)2〉 , (5)

R2
ol(K) = 〈(x̃ − β⊥t̃)(z̃ − βl t̃)〉 . (6)

The angular brackets denote space-time averages taken
with the emission function S(x, K) of the effective source
at momentum K, and coordinates with a tilde are mea-
sured relative to the center of the effective source: x̃µ =
xµ − x̄µ , x̄µ = 〈xµ〉 [20].

In the LCMS (Longitudinally CoMoving System [47]),
where βl = Kl = 0, R2

l and R2
ol simplify to

R2
l = 〈z̃2〉 , (7)

R2
ol = 〈(x̃ − β⊥t̃) z̃〉 . (8)

For further discussions of these expressions see [10,11].
The YKP parametrisation employs the components q0,

q⊥ =
√

q2
o + q2

s , and ql in the form [32,20,21]

C(q,K) = 1 + exp
[

−R2
⊥(K) q2

⊥ − R2
‖(K)

(
q2
l −(q0)2

)
−
(
R2

0(K)+R2
‖(K)

)
(q·U(K))2

]
. (9)

1 We denote the dependence on the pair momentum alterna-
tively by K or K where in the latter case the on-shell approx-
imation K0 =

√
m2 + K2 is implied
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The YKP radii R⊥, R‖, and R0 are invariant under lon-
gitudinal boosts of the measurement frame; they measure
(in some approximation) the transverse, longitudinal, and
temporal extension of the effective source in its longitudi-
nal rest frame (called Yano-Koonin (YK) frame) [32,20,
21]. This frame moves with the YK velocity v(K), defined
by the fourth fit parameter U(K) via

U(K) = γ(K) (1, 0, 0, v(K)), γ(K) =
1√

1 − v2(K)
.

(10)
The YKP parameters can be calculated from the emission
function through relations similar to (3)-(6): Defining [20,
21]

A =

〈(
t̃ − ξ̃

β⊥

)2〉
, (11)

B =

〈(
z̃ − βl

β⊥
ξ̃

)2
〉

, (12)

C =

〈(
t̃ − ξ̃

β⊥

)(
z̃ − βl

β⊥
ξ̃

)〉
, (13)

with ξ̃ ≡ x̃ + iỹ such that 〈ξ̃2〉 = 〈x̃2 − ỹ2〉, they are given
by2

v =
A + B

2C


1 −

√
1 −

(
2C

A + B

)2

 , (14)

R2
‖ = B − v C , (15)

R2
0 = A − v C , (16)

R2
⊥ = 〈ỹ2〉 . (17)

Note that the Yano-Koonin velocity v, and thus R‖ and
R0, are well-defined only for effective sources with (A +
B)2 −4C2 ≥ 0. It will be shown in [19] that this condition
can be violated in particular for opaque sources. In the
limit C → 0 the YK velocity v vanishes such that this
condition defines the YK frame. In this frame R2

‖ = B

and R2
0 = A.

As a side remark, we would like to note that the quan-
tities A, B, C from (11)-(13) are identical with the ra-
dius parameters introduced in [22,40,42], where a dif-
ferent Cartesian parametrisation based on the same q-
components as in the YKP case was used:

C(q,K) = 1 + exp[ − R2
⊥(K)q2

⊥ − R2
z(K)q2

l (18)
− R2

t (K)(q0)2 − 2 R2
zt(K)qlq

0] .

One easily shows

R2
t = A , R2

z = B , R2
zt = −C . (19)

Clearly, these parameters are not boost-invariant and thus
don’t lead directly to a simple space-time interpretation

2 Please note that the first expressions given on the r.h.s of
(19b,c) in [20] are only valid if A + B ≥ 0

of the correlator. Their usefulness is rather of technical
nature in the actual data fitting procedure [22,40,42] and,
of course, the YKP parameters can be reconstructed from
them via (14)–(16).

Our calculations in the following sections of the corre-
lation radii will be based on the expressions (3)-(8) and
(11)-(17).

3 Hydrodynamic parametrisation of the
source

For our studies we use slightly modified (see Appendix A)
model of [14]:

S(x, K) d4x =
M⊥ cosh(η − Y )

(2π)3
exp

[
−K · u(x)

T (x)

]

× exp

[
− r2

2R2 − (η − η0)
2

2(∆η)2

]
(20)

× τ dτ√
2π(∆τ)2

exp
[
− (τ − τ0)2

2(∆τ)2

]
dη r dr dφ.

This “emission function” parametrizes the distribution of
points of last interaction in the source. The parametri-
sation (20) is motivated by hydrodynamical models with
approximately boost-invariant longitudinal dynamics. It
uses thermodynamic and hydrodynamic parameters and
appropriate coordinates; for a detailed discussion see, e.g.,
[8]. In the calculations we use the on-shell approximation
K0 ≈ EK =

√
m2 + K2 as discussed in [11].

The velocity field u(x) determines the dynamics of the
source at freeze-out. We parametrize it by [12]

uµ(x) =
(

cosh η cosh ηt(r), cos φ sinh ηt(r),

sinφ sinh ηt(r), sinh η cosh ηt(r)
)
, (21)

thereby implementing a boost-invariant longitudinal flow
profile vL = z/t, with a linear radial profile of strength ηf

for the transverse flow rapidity3:

ηt(r) = ηf
r

R
. (22)

Parameterizing K in the usual way through rapidity Y ,
transverse mass M⊥ and transverse momentum K⊥, the
exponent of the Boltzmann term reads

K ·u(x) = M⊥ cosh(η−Y ) cosh ηt(r)−K⊥ sinh ηt(r) cos φ .
(23)

For ηf = 0 the emission function depends only on M⊥ and
not on K⊥. This scaling is broken by the transverse flow.

A special feature of the model suggested in [14] is the
parametrisation of the temperature profile:

1
T (x)

=
1
T0

(
1 + a2 r2

2 R2

)(
1 + d2 (τ − τ0)

2

2 τ2
0

)
. (24)

3 The nonrelativistic approximation of this transverse profile
used in [11,14,32] is advantageous for analytic manipulations
but not necessary if the correlation radii are evaluated numer-
ically



330 B. Tomášik, U. Heinz: Fine-tuning two-particle interferometry I: Effects from temperature gradients in the source

200-10 10-20
x (fm)

(c)

10

-10

-20

0

20
y 

(f
m

)
(a)

200-10 10-20
x (fm)

(b)

200-10 10-20
x (fm)

Fig. 1. Transverse cuts of the emis-
sion function for midrapidity pions
with transverse momentum K⊥ = 500
MeV/c (in x-direction), for the model
parameters given in Table 1. Left panel
a: neither flow nor temperature gradi-
ents; middle panel b: transverse flow
only with ηf = 0.7; right panel c: trans-
verse temperature gradient only with
a = 0.8
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Fig. 2. Contour plots of the z − t profiles of the emission
function for pions. The profiles are calculated in the CMS.
a,b: pair rapidity Y = 0, transverse pair momentum K⊥ = 1
MeV/c. c,d: Y = 2, K⊥ = 500 MeV/c. The sensitivity of the
profiles to K⊥ is weak. Source parameters as given in Table 1,
ηf = a = 0. Upper row a,c: no temporal temperature gradient,
d = 0; lower row b,d: d = 1.5

It introduces transverse and temporal temperature gradi-
ents which are scaled by the parameters a and d. Such a
profile concentrates the production of particles with large
M⊥ near the symmetry axis and close to the average
freeze-out time [14,15]. Note that the space-time depen-
dence of the temperature does not break the M⊥-scaling
of the emission function in the absence of transverse flow.

The emission functions (effective sources for pions with
given momenta) for different model parameters are shown
as density contour plots in Figs. 1 and 2. Transverse cuts
of the emission function are displayed in Fig. 1.

Transverse flow is seen to decrease the effective source
more in the sideward than in the outward direction (see
Fig. 1b and also Fig. 3 in [12]). Transverse temperature
gradients, on the other hand, just reduce the homogene-
ity lengths without changing the shape of the source (cf.
Figs. 1a,c).

A temporal temperature gradient has no impact on
the transverse source profile; its effect on the longitudinal
profile is seen in Fig. 2 (top vs. bottom row) where it de-
creases the temporal width of the effective sources without
otherwise changing the shape of the emission function.

Figure 2 also shows the different shapes of the effec-
tive source in the center of mass system (CMS) of the
fireball for midrapidity and forward rapidity pions. An in-
teresting feature are the emission time distributions: one

clearly sees that the boost-invariant longitudinal expan-
sion and proper-time freeze-out leads to freeze-out at dif-
ferent times in different places and thus generates time
distributions in a fixed coordinate system which cover a
much larger region [12,20] than the one corresponding to
the intrinsic eigentime width encoded in the emission func-
tion (20). The strongly non-Gaussian shape of the longi-
tudinal source distribution is known [12] to lead to non-
Gaussian effects on the longitudinal correlator; as shown
in [40] its Gaussian shape is, however, to some extent re-
stored by resonance decay contributions (not considered
here) which fill in the central region above the “hyperbola”
in the thermal source shown in Figs. 2a,b.4

For our numerical model study we use, if not stated
otherwise, the source (20) with the model parameters lis-
ted in Table 1.

4 Influence of temperature and flow gradients
on the HBT radii of a transparent source

In this section we discuss the effects of various types of
gradients in the source on the correlation radii. To be
able to recognize their specific signals we first investigate
the correlation radii in the absence of transverse flow and
temperature gradients. At the end of this section we try
with the help of temperature gradients to reproduce the
1/

√
M⊥ scaling proposed in [14] for Rs and the emission

duration.
For the sake of clarity, let us list here the various refer-

ence frames which will appear in the following discussion.
They differ by their longitudinal velocities.

CMS Center of Mass System of the fireball. In this frame
η0 = 0.

LCMS Longitudinally Co-Moving System – a frame mov-
ing longitudinally with the particle pair, i.e., Y = 0,
βl = 0.

YK The Yano-Koonin frame. It moves longitudinally with
the Yano-Koonin velocity v. The YKP radii measure
the homogeneity lengths of the source in this frame.

LSPS Longitudinal Saddle-Point System. This frame
moves longitudinally with the point where the emis-
sion function for particles with a given momentum K
has its maximum (point of maximal emissivity).

4 We thank to Urs Wiedemann for making this point



B. Tomášik, U. Heinz: Fine-tuning two-particle interferometry I: Effects from temperature gradients in the source 331

2

4

6

8 R  = R   (fm)s ⊥

pion pairs
kaon pairs

2

4

6

8

Y    = 0CM

Y    = 3CM

Y    = 1.5CM

R  (fm)o

Y    = 3CM

Y    = 1.5CM

Y    = 0CM

2

4

6

8

R  (fm)l
Y    = 3CM

Y    = 1.5CM

2

4

6

8

Y    = 0CM

R  (fm)=

Y    = 3CM

Y    = 1.5CM

5

10

15

20

25

200 400 600 800 1000
M  (MeV/c)⊥

R    (fm  )ol
2 2

Y    = 0CM

Y    = 1.5CM

5

10

Y    = 3CM

R   ((fm/c)  )2
0

2

200 400 600 800 1000
M  (MeV/c)⊥

Fig. 3. Correlation radii in the absence of
temperature gradients and transverse flow,
calculated for a transparent source with model
parameters from Table 1. In the left (right) col-
umn the M⊥ dependences of the YKP (Carte-
sian) radii are shown. The space-time vari-
ances from which they are calculated are eval-
uated in the LCMS. The HBT radii for pions
(kaons) are shown as solid (dashed) lines, in
three rapidity regions: YCM = 0, YCM = 1.5
and YCM = 3

Table 1. Values of model parameters used in numerical calculations

temperature T0 100 MeV
average freeze-out proper time τ0 7.8 fm/c
mean proper emission duration ∆τ 2 fm/c
geometric (Gaussian) transverse radius R 7 fm
Gaussian width of the space-time rapidity profile ∆η 1.3
pion mass mπ± 139 MeV/c2

kaon mass mK± 493 MeV/c2

It is obvious that each particle pair (via its momentum K)
defines its own LCMS, YK, and LSPS frame. The rapidity
of the pair in the CMS will be denoted by YCM = Y − η0.

4.1 No temperature and flow gradients

In Fig. 3 we show the M⊥ dependence of the correlation
radii for both the Cartesian and Yano-Koonin-Podgorets-
kĭı parametrisations, for a source without transverse flow
and temperature gradients. Non-trivial M⊥ dependencies
thus results solely from the effects of longitudinal expan-
sion or have a kinematic origin. All HBT radii are calcu-
lated from space-time variances of the emission function

evaluated in the LCMS. These curves are shown for later
reference only; for a detailed interpretation of their fea-
tures we refer to the existing literature [9,12,32,20,21,
11]. Here we concentrate on a few relevant features:

Due to the absence of transverse gradients, Rs = R⊥
is independent of K; it is not affected by longitudinal gra-
dients [21]. The outward Cartesian radius parameter Ro

reflects the effective lifetime of the source (in the frame in
which the expressions on the r.h.s. are evaluated) via [12,
47]

R2
diff ≡ R2

o −R2
s = β2

⊥
〈
t̃2
〉
+2 β⊥

〈
x̃t̃
〉
+
〈
x̃2 − ỹ2〉 . (25)
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Due to the absence of transverse flow the last two terms
vanish here. The effective lifetime in the YK frame (i.e. in
the rest frame of the effective source) is measured by R0 in
the YKP parametrisation [20,21]. Due to different kine-
matic factors the lifetime effects are stronger and more
easily visible in R0 than in Ro. Figure 2 also confirms
the observation [12,20] that the M⊥ dependence of the
effective emission duration is connected with the M⊥ de-
pendence of the longitudinal region of homogeneity which
results from longitudinal expansion [9].

The decrease of R‖ near the edge of the rapidity dis-
tribution results from an interplay between the Gaussian
space-time rapidity distribution and the Boltzmann fac-
tor in the emission function. It gives rise to a narrowing
rapidity width of the effective source with increasing pair
rapidity YCM . At large M⊥, the longitudinal radii Rl and
R‖ are independent of the pair rapidity YCM , due to the
longitudinal boost-invariance of the velocity profile in the
Boltzmann factor which dominates the shape of the emis-
sion function in the limit M⊥ → ∞.

It is interesting to compare the longitudinal Cartesian
radius parameter Rl in the LCMS frame with the longi-
tudinal YKP radius R‖. For small M⊥, Rl is larger than
R‖, although not by much, while at large M⊥ the two pa-
rameters agree. This can be understood by recalling the
relation [20]

R2
l = (1 − βl)

2
R2

‖ + γ2 (βl − v)2
(
R2

0 + R2
‖
)

(26)

which, together with two other such relations [20], ex-
presses the mathematical equivalence of the Cartesian and
YKP parametrisations. For large M⊥ the source velocity
v coincides with the longitudinal velocity βl of the pair
(which is zero in the LCMS). Then the second term in
(26) vanishes and R2

l = R2
‖ in the LCMS. For smaller val-

ues of M⊥ and YCM 6= 0 the pair and source velocities βl

and v are slightly different [20]; the resulting positive con-
tribution from the second term in (26) renders R2

l > R2
‖

unless R2
0 turns negative (cf. [19]). This feature was al-

ready observed by Podgoretskĭı [34] who introduced the
Yano-Koonin frame as the frame in which the production
process is reflection symmetric with respect to the longi-
tudinal direction. Within a class of non-expanding mod-
els he showed that in this frame the longitudinal source
radius is minimal. On first sight this appears to contra-
dict the laws of special relativity from which one might
expect that the longitudinal homogeneity length of the
source should be largest in the source rest frame and ap-
pear Lorentz contracted in any other frame. This argument
neglects, however, the fact that different points of the ho-
mogeneity region generally freeze out at different times5
(see Figs. 2c,d).

The cross term R2
ol shown in the lower right panel of

Fig. 3 is required by the invariance of the correlation func-
tion under longitudinal boosts of the measurement frame
[10,11]. Its value and M⊥ dependence depends strongly on
the measurement frame; for example, in the CMS the cross

5 We thank Ján Pǐsút for a clarifying discussion on this point

Table 2. The exponents found by a fit of the HBT radii with
the function Ri(M⊥) ∝ M−αi

⊥ , i = l, ‖, 0, for a transparent
source without transverse expansion and temperature gradi-
ents

YCM

0 1.5 3
pions 0.568 0.585 0.626

αl kaons 0.546 0.553 0.573
pions 0.568 0.542 0.478

α‖ kaons 0.546 0.538 0.515
pions 0.403 0.380 0.321

α0 kaons 0.202 0.197 0.185

term is negative with smaller absolute value [49] although
its generic M⊥ dependence remains similar.

Except for Ro and R2
ol, all radius parameters shown

in Fig. 3 scale with the transverse mass M⊥ and show no
explicit dependence on the particle rest mass. The curves
for pions and kaons thus coincide. This scaling is broken
for Ro and R2

ol by the appearance of explicit factors β⊥
in (4) and (6). A quantitative measure for the strength
of the M⊥ dependence can be obtained by fitting the ra-
dius to a power law, Ri(M⊥) ∝ M−αi

⊥ , i = l, ‖, 0 [27,28].
The corresponding exponents are listed in Table 2. The
longitudinal radius parameters Rl and R‖ scale approxi-
mately with 1/

√
M⊥ as predicted in [9]. The scaling power

is generally closer to -0.5 for kaons than for pions; this is
due to their larger rest mass which reflects in larger val-
ues for M⊥ where the saddle point approximation and the
assumption of longitudinal boost-invariance in [9] become
better. For the temporal YKP parameter R0 the 1/

√
M⊥

scaling law does not hold – it decreases more slowly, espe-
cially at larger M⊥ and for kaons.

4.2 Effects from individual types of gradients

In this subsection we investigate separately the effects
of specific types of gradients in the emission function on
the two-particle correlations, discussing at the same time
the corresponding single particle spectra. A simultaneous
analysis of one- and two-particle spectra is required for a
clear separation of thermal and collective features of the
source and for a complete reconstruction of its emission
function [14,50,51].

We begin with the discussion of gradient effects on
the single particle spectra. Figure 4 shows the influence
of transverse and temporal temperature gradients and of
transverse flow on the m⊥-spectra at fixed YCM = 0. Qual-
itatively very similar features are seen at other rapidity
values and in the rapidity integrated spectra. One sees
that even very strong temporal and transverse tempera-
ture gradients do not cause any major effects on the sin-
gle particle spectra, compared to the case without any
gradients. Their main effect is a change of the normalisa-
tion because the colder regions of the emission function
contribute less; their contribution is also concentrated at
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Fig. 4. Transverse mass spectra at
midrapidity from a transparent source.
Black lines correspond to pions, gray
lines to kaons. In the left plot the ef-
fects from different types of gradients are
shown individually, in the right plot we
study the interplay of transverse temper-
ature gradients with transverse flow

smaller momenta, leading to a somewhat steeper slope of
the transverse mass spectra at low m⊥.

This situation changes dramatically when the source
develops transverse collective flow. In the absence of tem-
perature gradients, transverse flow simply flattens the m⊥-
spectra [52]. For large m⊥ � m0 (i.e. relativistic mo-
menta) this can be described in terms of an effective blue-

shifted temperature Teff = T
√

1+〈v(r)〉
1−〈v(r)〉 which is the same

for all particle species while at small m⊥ the flattening is
even stronger and depends on the particle mass via the
nonrelativistic relation Teff = T + m〈v(r)〉2 [52]. These
features have now been clearly observed in the heavy col-
lision systems studied at the Brookhaven AGS and CERN
SPS [53]. Transverse flow clearly also breaks the m⊥ scal-
ing between pions and kaons: the pion and kaon spectra in
the left panel of Fig. 4 have different slopes and normali-
sations.

Additional temperature gradients which are imposed
on top of the transverse expansion flow affect the spectra
as shown in the right panel of Fig. 4. A temporal gradient
of the source temperature has no qualitative effect on the
shape of the m⊥ spectra and only affects their normali-
sation. A transverse spatial gradient of the temperature,
however, interferes seriously with the transverse flow by
strongly reducing its effect on the slope of the m⊥ spec-
tra. For a strong transverse temperature gradient with
a = 5 as shown in the Figure, a comparison with the left
panel shows that the flow effects become nearly invisible.
An analytical discussion of this behaviour is given in [14]
where it is shown to occur if the transverse homogeneity
length generated by temperature gradient becomes much
smaller than the one generated by the transverse veloc-
ity gradient. It follows from this discussion that it is not
possible to generate a strong (additional) M⊥-dependence
of the transverse HBT radius parameter from transverse
temperature gradients (see below) without at the same
time reducing the flow effects on the single particle m⊥
spectra.

We now proceed to a discussion of the HBT radius
parameters. The effect of temporal temperature gradients
is studied in Fig. 5. As expected, they affect mostly those
HBT parameters which are sensitive to the effective life-
time of the source, namely the temporal YKP parameter
R0 and the Cartesian difference R2

o − R2
s. These are re-

duced by increasing d. The origin of this effect can be
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Fig. 5. The effects of temporal temperature gradients on the
temporal YKP parameter R0 (upper panel) and the difference
R2

o − R2
s in the Cartesian parametrisation (lower panel). Solid

(dashed) lines are for pions (kaons). The calculations are done
for midrapidity pairs, YCM = 0, and for a = ηf = 0

seen in Fig. 2 which shows that larger values of d concen-
trate the high temperature region (with large emissivity)
to a narrower region in the z-t plane. The narrowing oc-
curs predominantly in the temporal direction, but affects
slightly also the longitudinal homogeneity length. Going
from central rapidity to pairs at forward rapidities, all
curves change in a similar way as shown in Fig. 3.

Transverse temperature gradients leave their traces
only in the transverse homogeneity length measured by
Rs = R⊥. In Fig. 6 this is shown for pions and kaons at
mid-rapidity. (Note that in our model Rs is rapidity inde-
pendent.)

The most important feature of both types of temper-
ature gradients is that they do not break the M⊥ scaling
of the YKP correlation radii found in previous subsection.
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Note also that the temperature gradients have no quali-
tative impact on the YK rapidity YYK associated with the
YK velocity v.

Many of these features change in the presence of trans-
verse flow. This is shown in Fig. 7 for pairs with rapid-
ity YCM = 1.5 in the CMS. All radius parameters have
been calculated from space-time variances evaluated in
the LCMS. The choice of a non-zero CMS pair rapidity en-
sures a non-vanishing cross term Rol. The generic rapidity
dependence of the radii follows the behaviour discussed in
Sect. 4.1.

Since transverse flow introduces velocity gradients in
the transverse direction, Rs(= R⊥) and Ro decrease with
increasing ηf . Less obvious is, however, the rather strong
effect of transverse flow on the “temporal” YKP parame-
ter R2

0. For higher transverse masses the latter even begins
to increase with M⊥. This does not, however, reflect the
behaviour of the emission duration which continues to de-
crease for particles with higher M⊥. The increase of R2

0
is rather caused by correction terms expressing the differ-
ence between R2

0 and the lifetime [20,21]:

R2
0 − 〈t̃2〉 =

2
β⊥

〈x̃t̃〉 +
1

β2
⊥

〈x̃2 − ỹ2〉 . (27)

Especially the second term on the r.h.s. grows appreciably
with increasing ηf , and even more so for pions than for
kaons. This was studied in detail in [21] (cf. Fig. 2 of that
paper) where a more detailed explanation of the curves
for R2

0 shown here can be found.
The most important feature of Fig. 7 is the breaking of

the M⊥ scaling of the YKP radii by the transverse flow.

4.3 Interplay of all gradients

In [14] it was claimed that an interplay of the various
types of gradients discussed above can lead to a common
1/

√
M⊥ scaling law for all three Cartesian HBT radii, Rl,

Rs, and Ro, as well as for the effective lifetime of the
source. The condition for such a common scaling is that
the geometric extension is large compared to the “thermal
length scales” generated by temperature and flow gradi-
ents [14]. The claim of [14] was based on approximate ana-
lytical expressions for these radius parameters which were
obtained by evaluating the corresponding integrals over
the emission function within an improved saddle-point ap-
proximation scheme. In this subsection we present a nu-
merical test of this claim. To this end we select a set of
parameters (a = 0.6, d = 10, ηf = 0.2) for which at mid-
rapidity the conditions for such a scaling, as given in [14],
are satisfied as much as possible, without leaving the phe-
nomenologically realistic range. It should be mentioned,
that our model differs slightly from that of [14]. The dif-
ferences are explicitly treated in Appendix A where they
are shown to be small, and our findings are not affected
by them.

The numerically evaluated correlation radii for this pa-
rameter set are plotted with thick black lines in Fig. 8.
The analytical approximation according to [14] is shown
by the thin lines for comparison. With thick grey lines the
numerically computed results from original model of [14]
introduced in Appendix A are plotted. We agree with the
conclusions drawn from a similar comparison presented
in [23] that for kaons the approximate analytical formu-
lae agree with the numerical curves within 15%. For pions
with transverse momenta below 600 MeV the discrepan-
cies are larger because one of the conditions of validity of
the analytical formulae (sufficiently large M⊥) is violated.
However, the analytical approximation does not give at all
the (slight) breaking of the M⊥ scaling of Rl by the trans-
verse flow, and at mid-rapidity it misses the initial rise of
Ro at small M⊥. This last point in particular is a serious
problem if one wishes to extract an estimate of the effec-
tive lifetime according to (25). Similar (dis-)agreement at
a comparative level is seen for forward rapidity pairs at
YCM = 1.5, with the exception of the cross term Rol which
is strongly overestimated by the approximation. The ana-
lytical approximation of [14] is restricted by the condition
that the flow rapidity of the point of maximum emissiv-
ity in the LCMS is small. Since the latter coincides with
good approximation with the YK rapidity [20] and, in our
model, the YK rapidity is found to converge to Y in the
limit M⊥ → ∞ [20,21], the point of maximum emissivity
moves to zero LCMS rapidity in that limit. This explains
why for large M⊥ the analytical and numerical results
agree.

On a superficial level the analytical approximations
of [14] thus don’t seem to be doing too badly. We want
to check, however, whether the results also confirm the
suggested 1/

√
M⊥-scaling. In [21] it was shown that in

general the strength of the M⊥-dependence of Rs and
Rl (resp. R⊥ and R‖) is correlated with the strength of
collective flow in the transverse resp. longitudinal direc-
tions. One way of quantifying the strength of the M⊥-
dependence of the correlation radii is to fit them to a
power law Ri ∝ M−αi

⊥ (i = s, l, ‖, 0) and to study the
values of the exponents αi. According to the approxi-
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mate formulae of [14], at mid-rapidity all these powers
should be equal to 0.5. The αi-values obtained from the
numerically evaluated correlation radii are listed in Ta-
ble 3. One sees that only the longitudinal radius parame-
ters (both in YKP and Cartesian parametrisations) follow
an approximate 1/

√
M⊥ scaling law, similar to previous

studies without temperature gradients [12,21]. It reflects
the boost-invariance of the longitudinal expansion veloc-
ity profile [9]. The transverse and temporal radius param-
eters Rs = R⊥ and R0 scale much more weakly with M⊥.
For mid-rapidity kaons R0 provides a good estimate for
the emission duration because for ηf = 0.2 the correction
terms on the r.h.s. of (27) are small; thus we find that
also the effective lifetime of the source does not scale with
1/

√
M⊥. Thus, while the conditions for the saddle point

approximation in [14] are satisfied with sufficient accuracy
by our (semi-realistic) parameter set, the stronger condi-
tions required for the common 1/

√
M⊥-scaling are not.

5 Conclusions

Let us shortly summarize the most important results:

Table 3. The exponents αi found in a fit of the numerically
computed correlation radii to a power law Ri ∝ M−αi

⊥ , for a
source with the parameters given in Fig. 8

YCM

0 1.5 3
pions 0.257 0.253 0.240

αs kaons 0.306 0.304 0.297
pions 0.512 0.527 0.565

αl kaons 0.519 0.524 0.538
pions 0.512 0.496 0.453

α‖ kaons 0.519 0.512 0.494
pions 0.373 0.360 0.324

α0 kaons 0.225 0.223 0.262

Transverse temperature gradients and transverse flow
have similar effects on the transverse HBT radii Rs = R⊥,
but not on the single particle spectra. Both lead to a de-
crease of Rs with increasing M⊥, but while transverse flow
flattens the single particle spectra, a transverse tempera-
ture gradient only reduces their normalisation. A weak
M⊥-dependence of Rs due to a moderate transverse flow
can be increased by adding a transverse temperature gra-
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source with parameters a = 0.6, d = 10,
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dient, but only at the expense of simultaneously reducing
the flow effects on the single particle spectra. This is im-
portant for the interpretation of experimental data.

For transparent sources, transverse temperature gradi-
ents preserve the M⊥-scaling of the YKP radius parame-
ters while transverse flow breaks it. This breaking of M⊥-
scaling is weak, however, the most sensitive parameter be-
ing R2

0.
Temporal temperature gradients affect mostly the tem-

poral HBT radii, i.e. the difference R2
o − R2

s in the Carte-
sian parametrisation and R2

0 in the YKP parametrisation.
We could not confirm the existence of a common

1/
√

M⊥ scaling law for all three Cartesian HBT radius

parameters and the effective source lifetime in the case of
the “thermal lengths” being smaller than the geometric
lengths. For realistic model parameters, the M⊥-depen-
dence for Rs and R0 is always much weaker than for the
longitudinal radius parameters Rl resp. R‖.
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A The model of Csörgő and Lörstad

In this Appendix we point out the differences between
our model and that of [14] and study their impact on our
findings from Sect. 4.3.

The model of [14] is given by the emission function

S(x, K) d4x =
g

(2π)3
M⊥ cosh(η − Y )

× exp
[
−K · u(x)

T (x)
+

µ(x)
T (x)

]
(28)

× τ ′
0 dτ√

2π ∆τ ′2
exp

[
− (τ − τ ′

0)
2

2 ∆τ ′2

]
dη r dφ dr .

Since in the used coordinates the measure reads d4x =
dτ τ dη r dφ dr, it is seen that here another geometric
eigentime distribution is used, namely

H(τ) =
τ ′
0

τ

1√
2π ∆τ ′2

exp
[
− (τ − τ ′

0)
2

2 ∆τ ′2

]
. (29)

This differs from our distribution by the pre-factor τ ′
0/τ .

For the comparison with our model, the values of τ ′
0 and

∆τ ′ are obtained via the saddle point approximation to
our Gaussian eigentime distribution multiplied by τ from
the Jacobian. This gives

τ ′
0 =

τ0 +
√

τ2
0 + 4∆τ2

2
, (30)

∆τ ′ =
τ ′
0 ∆τ√

∆τ2 + τ ′
0
2

. (31)

The remaining geometry of the model (28) is encoded in
chemical potential

µ(x)
T (x)

=
µ0

T0
− r2

2 R2 − (η − η0)2

2 ∆η2 , (32)

so this is the same as in our model (20). There is a slight
difference in the formulation of temperature gradients:

1
T (x)

=
1
T0

(
1 + a′2 r2

2 τ ′
0
2

)(
1 + d′2 (τ − τ ′

0)
2

2 τ ′
0
2

)
, (33)

where the transverse gradient scales with a′/τ ′
0 (and not

with a/R). Furthermore, the transverse flow rapidity is
given as

ηt = η′
f

r

τ ′
0

, (34)

instead of ηf r/R. This requires appropriate re-scaling of
a′ and η′

f . Also, d′ has to be re-scaled relatively to d by the
factor τ ′

0/τ0. Note finally that in the numerical calculation
we have used the expansion four-velocity field as given by
the relativistic formula (21) with the transverse rapidity
profile (34), while in [14] the non-relativistic approxima-
tion to the transverse expansion is used in the formulation
of the model.

Table 4. The exponents αi found in a fit of the numerically
computed correlation radii to a power law Ri ∝ M−αi

⊥ , for a
source from (28) and with the parameters correspondingly re-
scaled to approximate those used in Fig. 8. In brackets are the
results of the same fit done with curves computed using the
analytical approximation from [14]

YCM

0 1.5 3
pions 0.257 (0.301) 0.253 (0.274) 0.240

αs kaons 0.306 (0.370) 0.304 (0.364) 0.297
pions 0.511 (0.569) 0.526 (0.562) 0.564

αl kaons 0.518 (0.531) 0.523 (0.535) 0.538
pions 0.511 0.495 0.452

α‖ kaons 0.518 0.512 0.493
pions 0.395 0.381 0.344

α0 kaons 0.245 0.242 0.279

The results are plotted with grey lines in Fig. 8. It is
clearly seen that the difference between the mentioned two
models is small.

For the computation of the curves using the analytical
formulae found in [14] (thin lines in Fig. 8) we used the
re-scaled model parameters as explained above.

To be in the region where the 1/
√

M⊥-scaling should
take place we have chosen: a = 0.6, d = 10, ηf = 0.2. Note
that with the appropriately re-scaled parameter values
(see above) we satisfy the conditions given in [23] which
need to be satisfied for a 15-20% agreement between the
numerical calculation and the analytical approximations
of the model (28).

To be sure that the slope parameters found in Table 3
are not an artefact of the difference between our model
and that of [14] we did the same fit with the numerically
calculated radii resulting from (28) and even with the an-
alytically computed curves. Results of that fit are listed in
Table 4. The differences of the exponents listed in Tables 3
and 4 are in case of αs, αl and α‖ within 1%, α0’s differ
up to 10%. The qualitative discussion concerning the ex-
ponents from Sect. 4.3 remains valid for the set given in
Table 4. The same is true for the analytically determined
radii.

This again supports the conclusion, that even if good
agreement between numerical and analytical results is
achieved, for a realistic set of parameters the conditions
for common scaling of all three Cartesian radii with M

−1/2
⊥

are not fulfilled.
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